§ 6. Аминокислоты как структурные элементы белков
^ Вверх

Глава III. БЕЛКИ


§ 6. АМИНОКИСЛОТЫ КАК СТРУКТУРНЫЕ ЭЛЕМЕНТЫ БЕЛКОВ


Природные аминокислоты

Аминокислоты в живых организмах встречаются преимущественно в составе белков. Белки построены в основном двадцатью   стандартными   аминокислотами.   Они   являются a-аминокислотами и  отличаются друг от друга строением боковых групп (радикалов), обозначаемых буквой R:

Разнообразие боковых радикалов аминокислот играет ключевую роль при формировании пространственной структуры белков, при функционировании активного центра ферментов.

Структура стандартных аминокислот приведена в конце параграфа в табл.3. Природные аминокислоты имеют тривиальные названия, оперировать которыми при записях структуры белков неудобно. Поэтому для них введены трехбуквенные и однобуквенные обозначения, которые также представлены в табл.3.

 

Пространственная изомерия

У всех аминокислот, за исключением глицина, a-углеродный атом является хиральным, т.е. для них характерна оптическая изомерия. В табл. 3 хиральный атом углерода обозначен звездочкой. Например, для аланина проекции Фишера обоих изомеров выглядят следующим образом: 

Для их обозначения, как  и  для  углеводов,  используется D, L-номенклатура. В состав белков входят только L-аминокислоты.

L- и D-изомеры могут взаимно превращаться друг в друга. Этот процесс называется рацемизацией.


Интересно знать! В белке зубов – дентине – L-аспарагиновая кислота самопроизвольно рацемизуется при температуре человеческого тела со скорость 0,10 % в год. В период формирования   зубов   в   дентине содержится  только  L-аспарагиновая кислота, у взрослого же человека в результате рацемизации образуется D-аспарагиновая кислота.  Чем  старше   человек,  тем   выше   содержание D-изомера. Определив соотношение D- и L-изомеров, можно достаточно точно установить возраст. Так были изобличены жители горных селений Эквадора, приписывавшие себе слишком большой возраст.

 

Химические свойства

Аминокислоты содержат амино- и карбоксильную группы. В силу этого они проявляют амфотерные свойства, то есть свойства и кислот и оснований.

При растворении аминокислоты в воде, например, глицина, его карбоксильная группа диссоциирует с образованием иона водорода. Далее ион водорода присоединяется за счет неподеленной пары электронов у атома азота к аминогруппе. Образуется ион, в котором одновременно присутствуют положительный и отрицательный заряды, так называемый цвиттер-ион:

Такая форма аминокислоты является преобладающей в нейтральном растворе. В кислой среде аминокислота, присоединяя ион водорода, образует катион: 

В щелочной среде образуется анион: 

Таким образом, в зависимости от рН среды аминокислота может быть положительно заряженной, отрицательно заряженной и электронейтральной (при равенстве положительных и отрицательных зарядов).  Значение рН раствора, при котором суммарный заряд аминокислоты равен нулю, называется изоэлектрической точкой данной аминокислоты. Для многих аминокислот изоэлектрическая точка лежит вблизи рН 6. Например, изоэлектрические точки глицина и аланина имеют значения 5,97 и 6,02 соответственно.

Две аминокислоты могут реагировать друг с другом, в результате чего отщепляется молекула воды и образуется продукт, который называется дипептидом

Связь, соединяющая две аминокислоты, носит название пептидной связи. Если пользоваться буквенными обозначениями аминокислот, образование дипептида можно схематически представить следующим образом:

Аналогично образуются трипептиды, тетрапептиды и т.д.:

H2N – лиз – ала – гли – СООН    –   трипептид

H2N – трп – гис – ала – ала – СООН    –   тетрапептид

H2N – тир – лиз – гли – ала – лей – гли – трп – СООН   –   гептапептид

Пептиды, состоящие из небольшого числа аминокислотных остатков, имеют общее название  олигопептиды.

 

Интересно знать! Многие олигопептиды обладают высокой биологической активностью. К ним относится ряд гормонов, например, окситоцин (нанопептид) стимулирует сокращение матки, брадикинин (нанопептид) подавляет воспалительные процессы в тканях. Антибиотик грамицидин С (циклический декапептид) нарушает регуляцию ионной проницаемости в мембранах бактерий и тем самым убивает их. Грибные яды аманитины (октапептиды), блокируя синтез белка, способны вызвать сильное отравление у человека. Широко известен аспартам - метиловый эфир аспартилфенилаланина. Аспартам имеет сладкий вкус и используется для придания сладкого вкуса  различным продуктам, напиткам.

 

Классификация аминокислот

Существует несколько подходов к классификации аминокислот, но наиболее предпочтительной является классификация, основанная на строении их радикалов. Выделяют четыре класса аминокислот, содержащих радикалы следующих типов; 1) неполярные (или гидрофобные); 2) полярные незаряженные; 3) отрицательно заряженные и 4) положительно заряженные:

К неполярным (гидрофобным) относятся аминокислоты с неполярными  алифатическими (аланин, валин, лейцин, изолейцин) или ароматическими (фенилаланин и триптофан) R-группами и одна серусодержащая аминокислота – метионин.

Полярные незаряженные аминокислоты в сравнении с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды. К ним относятся аминокислоты, содержащие полярную НО-группу (серин, треонин  и тирозин),  HS-группу (цистеин), амидную  группу  (глутамин,  аспарагин) и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам. Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин, в ионизированном виде они имеют суммарный положительный заряд: 

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

Десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в человеческом организме. Остальные должны содержаться в нашей пище. К ним относятся аргинин, валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин и гистидин. Эти аминокислоты называются незаменимыми. Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

 

Интересно знать! Исключительно важную роль играет сбалансированность питания человека по аминокислотам. При недостатке незаменимых аминокислот в пище организм саморазрушается. При этом страдает в первую очередь головной мозг, что приводит к различным заболеваниям центральной нервной системы, психическим расстройствам. Особенно уязвим молодой растущий организм. Так, например, при нарушении синтеза тирозина из фенилаланина у детей развивается тяжелое заболевание финилпировиноградная олигофрения, вызывающее тяжелую умственную отсталость или гибель ребенка. 


Таблица 3

Стандартные аминокислоты

 

Аминокислота 

(тривиальное название)

Условные обозначения

Структурная формула

Русское

Латинское

 трехбук- венное

 однобук-венное

НЕПОЛЯРНЫЕ (ГИДРОФОБНЫЕ)

Аланин

Ала

Ala

A

 

Валин

Вал

Val

V

 

Лейцин

Лей

Leu

L

 

Изолейцин

Иле

Ile

I

 

Пролин

Про

Pro

P

 

Фенилаланин

Фен

Phe

F

 

Триптофан

Трп

Trp

W

 

Метионин

Мет

Met

M

 

ПОЛЯРНЫЕ  НЕЗАРЯЖЕННЫЕ

Серин

Сер

Ser

S

 

Треонин

Тре

Thr

T

 

Аспарагин

Асн

Asn

N

 

Глутамин

Глн

Gln

Q

 

Цистеин

Цис

Cys

C

 

Тирозин

Тир

Tyr

Y

 

Глицин

Гли

Gly

G

 

ОТРИЦАТЕЛЬНО ЗАРЯЖЕННЫЕ

Аспарагиновая

кислота

Асп

Asp

D

 

Глутаминовая

кислота

Глу

Glu

E

 

ПОЛОЖИТЕЛЬНО ЗАРЯЖЕННЫЕ

Лизин

Лиз

Lys

K

 

Аргинин

Арг

Arg

R

 

Гистидин

Гис

His

H

 

Примечание: * хиральный атом углерода.